Variation in competitive ability among isolates of Aspergillus flavus from different vegetative compatibility groups during maize infection.

نویسندگان

  • H L Mehl
  • P J Cotty
چکیده

ABSTRACT Aspergillus flavus, the primary causal agent of aflatoxin contamination, includes many genetically diverse vegetative compatibility groups (VCGs). Competitive ability during infection of living maize kernels was quantified for isolates from 38 VCGs. Kernels were inoculated with both a common VCG, CG136, and another VCG; after 7 days (31 degrees C), conidia were washed from kernels, and aflatoxins and DNA were extracted from kernels and conidia separately. CG136-specific single-nucleotide polymorphisms were quantified by pyrosequencing; VCGs co-inoculated with CG136 produced 46 to 85 and 51 to 84% of A. flavus DNA from kernels and conidia, respectively. Co-inoculation with atoxigenic isolates reduced aflatoxin up to 90% and, in some cases, more than predicted by competitive exclusion alone. Conidia contained up to 42 ppm aflatoxin B(1), indicating airborne conidia as potentially important sources of environmental exposure. Aflatoxin-producing potential and sporulation were negatively correlated. For some VCGs, sporulation during co-infection was greater than that predicted by kernel infection, suggesting that some VCGs increase dispersal while sacrificing competitive ability during host tissue colonization. The results indicate both life strategy and adaptive differences among A. flavus isolates and provide a basis for selection of biocontrol strains with improved competitive ability, sporulation, and aflatoxin reduction on target hosts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Soil Populations of Aspergillus flavus Link. from Pistachio Orchards in Iran for Vegetative Compatibility

One hundred-thirty soil isolates of A. flavus were collected from commercial pistachio orchards in two main production regions including Rafsanjan (Kerman Province, south-eastern of Iran) and Damghan (Semnan Province, central north of Iran) and assayed for vegetative compatibility groups (VCGs). The sixteen and twenty VCGs were identified for 41 and 37 nit-mutant producing isolates of A. flavus...

متن کامل

Identification of Atoxigenic Aspergillus flavus Isolates to Reduce Aflatoxin Contamination of Maize in Kenya

Probst, C., Bandyopadhyay, R., Price, L. E., and Cotty, P. J. 2011. Identification of atoxigenic Aspergillus flavus isolates to reduce aflatoxin contamination of maize in Kenya. Plant Dis. 95:212-218. Aspergillus flavus has two morphotypes, the S strain and the L strain, that differ in aflatoxin-producing ability and other characteristics. Fungal communities on maize dominated by the S strain o...

متن کامل

Development of Aspergillus Flavus Af36

Aflatoxins are highly toxic cancer causing fungal metabolites known to cause immune-system suppression, growth retardation, liver disease, and death in both humans and domestic animals. Human exposure to aflatoxins is limited by regulations that prohibit the use of crops containing excess quantities of aflatoxins for foods and feeds. Aflatoxins are regulated in part per billion (ppb) ranges wit...

متن کامل

Influence of plant host species on intraspecific competition during infection by Aspergillus flavus

Compositions of Aspergillus flavus populations determine the extent to which crops become contaminated with aflatoxins. In the current study, influences of diverse crop hosts on competition among A. flavus isolates were quantified with pyrosequencing. Maize, cotton, soyabean and sorghum supported different levels of sporulation, but intraspecific differences in sporulation were not detected on ...

متن کامل

Genetic isolation among sympatric vegetative compatibility groups of the aflatoxin-producing fungus Aspergillus flavus.

Aspergillus flavus, a fungal pathogen of animals and both wild and economically important plants, is most recognized for producing aflatoxin, a cancer-causing secondary metabolite that contaminates food and animal feed globally. Aspergillus flavus has two self/nonself recognition systems, a sexual compatibility system and a vegetative incompatibility system, and both play a role in directing ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytopathology

دوره 100 2  شماره 

صفحات  -

تاریخ انتشار 2010